

Linear Algebra Assignment #5

(Not to be collected.)

1) [Eigenvalues and eigenvectors] Find the eigenvalues and a set of linearly independent eigenvectors of the matrices A, B, and P.

a) $A = \begin{bmatrix} 5 & 5 \\ 6 & 4 \end{bmatrix}$

b) $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

c) $P = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$

2) [Eigenvalues and eigenvectors proofs] Prove the following claims.

- For a projection matrix P, eigenvalues are either 0 or 1.
- Let A be an n by n matrix. Let x_1, x_2, \dots, x_n be the eigenvectors of A with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ respectively. Then the eigenvectors x_i ($i = 1, \dots, n$) are linearly independent.
- Diagonalizable matrices A, B share the same eigenvectors matrix S if and only if $AB=BA$.
- A matrix A has an inverse matrix A^{-1} if and only if it does not have zero as an eigenvalue. If nonzero λ_i are the eigenvalues of A, then the eigenvalues of A^{-1} are $1/\lambda_i$.

3) [Powers of a matrix] Let A be the matrix which has an eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ corresponding to the eigenvalue 3 and has an eigenvector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ corresponding to the eigenvalue -2 and also let $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, find $A^{2000}v$.

4) [Diagonalization] Find the eigenvalues of A and if possible diagonalize A.

$$A = SAS^{-1}$$

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

b) $A = \begin{bmatrix} 6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3 \end{bmatrix}$

5) [SVD] Find the singular value decomposition of the matrices A, B, and S. Express B and S as σuv^T after calculating two pieces with SVD.

$$A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 3 \end{bmatrix}, S = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix}$$

6) [Complex Numbers]

Let $z_1 = -2+2i$, and $z_2 = 1+\sqrt{3}i$

Find $z_1 z_2$, z_1/z_2 in polar form.

7) [Complex Matrices]

Let F_4 be a 4 by 4 Fourier matrix, and v be a vector

$$F_4 = \begin{bmatrix} i^0 & i^0 & i^0 & i^0 \\ i^0 & i & i^2 & i^3 \\ i^0 & i^2 & i^4 & i^6 \\ i^0 & i^3 & i^6 & i^9 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

a) Calculate $x = F_4 v$.
b) Find the unitary matrix kF_4 where k is a number.

8) [Linear Transformations]

The parts a, b, and c are separate questions.

a) Let $T: R^3 \rightarrow P_2[x]$ be a linear transformation with $T([x, 0, 0]) = x+1$, $T([0, x, 0]) = x^2 - x$, and $T([0, 0, x]) = x^2$, find $T([a, b, c])$, also find the standard matrix A for the transformation.
b) Show that the Laplace transform is a linear operator.
c) $Q = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Let M be any 2 by 2 matrix and T be $T(M) = QM$. Is T a linear transformation? Is T one-to-one? Is T onto?

9) [Differential Equations] Solve the following the system of equations.

a) $x' = Ax : A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$
b) $x' = Ax : A = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix}, x(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$